
Computer Puppetry: An Importance-Based

Approach

To appear in ACM Transactions on Graphics journal

Hyun Joon Shin† Jehee Lee† Michael Gleicher‡ Sung Yong Shin†

†Division of Computer Science, Department of Electrical Engineering & Computer Sciences

Korea Advanced Institute of Science & Technology, Taejon, Korea

{joony,jehee,syshin}@jupiter.kaist.ac.kr

‡Department of Computer Sciences, University of Wisconsin-Madison

Madison, WI, USA

gleicher@cs.wisc.edu

April 29, 2001

Abstract

Computer puppetry maps the movements of a performer to an animated charac-

ter in real time. In this paper, we provide a comprehensive solution to the problem

of transferring the observations of the motion capture sensors to an animated char-

acter whose size and proportion may be different than the performer. Our goal is

to map as much of the important aspects of the motion to the target character as

possible, while meeting the on-line, real-time demands of computer puppetry. We

adopt a Kalman filter scheme that addresses motion capture noise issues in this

1

setting. We provide the notion of dynamic importance of an end-effector that al-

lows us to determine what aspects of the performance must be kept in the resulting

motion. We introduce a novel inverse kinematics solver that realizes these impor-

tant aspects within tight real-time constraints. Our approach is demonstrated by its

application to broadcast television performances.

1 Introduction

Computer puppetry [24] transforms the movements of a performer to an animated char-

acter in real time. The immediacy of computer puppetry makes it useful for providing

live performances and as a visualization tool for traditional cinematic animation. How-

ever, this immediacy creates a number of challenges, as solutions to animation issues

must be handled in an on-line, real-time manner. A computer puppetry system must

capture the movements of the performer, interpret the important aspects of this motion,

and determine the movements required to make the character reproduce these important

aspects of the performance.

The challenges of mapping a motion from the performer to the target character

become more difficult when the target character is of a different size and proportion

than the performer [3, 5, 7, 12]. In such cases, the resulting motion of the character

cannot exactly duplicate the original performer’s. For example, we cannot simultane-

ously match the original joint angles and end-effector positions. Generally, to preserve

the important aspects of the original motion we must alter the unimportant aspects of

the motion. This process of adapting a motion for a new character is called retarget-

ting [12, 17].

To date, solutions to computer puppetry issues have been limited to restricting the

range of puppets that can be used or providing restrictive notions of what is important in

motions. The latter implicitly limits the range of puppets since artifacts are introduced

as the puppet’s differences from the performer are increased.

2

In this paper we provide techniques that address the challenges of computer pup-

petry when the target character is different than the performer. Three major animation

issues are addressed in a manner that fits within the real-time, on-line nature of com-

puter puppetry:

1. The sensors used to capture the performer’s motion are often noisy. Therefore,

we provide a filtering technique that operates on-line with the efficiency required

to process whole body motions in real time. We apply a Kalman Filter to rotation

vectors, providing an orientation smoothing technique that is more efficient than

previous methods.

2. The important aspects of the original performance must be determined such that

these details can be reproduced in the resulting motion. We provide the notion of

a dynamic importance measure that allows us to account for changing situations

even when the future is unknown.

3. The resulting pose of the target character must be computed in a way that recre-

ates the important aspects of the original. We provide a fast inverse kinematics

solver that provides the necessary real-time performance and predictability.

Our solutions have been used to realize a computer puppetry system that has been used

successfully to create animated television broadcasts.

We begin our discussion of computer puppetry by providing an overview of our ap-

proach. We examine previous solutions with respect to the issues raised in the overview.

The components of our approach are then detailed in Sections 3, 4, and 5. An analy-

sis in Section 6 reviews why our approach avoids introducing unwanted artifacts such

as temporal discontinuities. Our experimental results are provided to support our ap-

proach. We conclude with a summary and discussion of future directions.

3

captured
motion

Kalman
Filter

Inverse Kinematics
Solver

Limb Posture
Computation

Body Posture
Computation

Root Position
Estimation

motion
final

Posture
Analyzer

Figure 1: Overall structure

2 Overview

Computer puppetry requires the captured movements of the performer to be mapped to

the target character in real time. As shown in Figure 1, our approach for on-line motion

retargetting divides the task into three phases. First, a filtering phase “cleans” the sensor

data to remove artifacts of the motion capture device. A second phase examines this

filtered motion and determines the importance value of every end-effector in relation

to its environment. A final phase computes a pose for the target character that achieves

as much of the important aspects as possible. In this section, we provide an overview

of these components and survey their relationship to previous work.

2.1 On-Line Filtering of Orientations

In general, captured motion data are noisy. The real-time sensors required for computer

puppetry are particularly problematic in this regard. However, because of the dense

sampling rates and signal characteristics of motion capture data, low-pass filtering is

an effective tool to suppress noise in the captured data. This is challenging for three

reasons:

1. Because computer puppetry is an on-line application, standard off-line filters

cannot be employed.

2. Because the orientation space is highly non-linear, standard signal processing

methods cannot be applied directly.

4

3. Because of the real-time demands, filtering should be performed on the entire

body very efficiently.

A Kalman filter uses prediction of future values to create a filtering scheme that

operates in an on-line manner. The technique is common in on-line applications, and

was first introduced to the graphics community by Friedman et. al. [9]. Such a filter

cannot be directly applied to rotation data without accounting for the non-linearity of

the rotation space. To address this problem, Welch and Bishop [28] linearized the

orientation space by locally parameterizing the incremental orientation change with

Euler angles, based on the result in [1, 6]. Because they were interested only in tracking

the head motion, they were less concerned with efficiency than we are and therefore

addressed only issues 1 and 2 above. In Section 3 we provide a modified Kalman filter.

To achieve real-time performance, we locally parameterize the incremental orientation

with rotation vectors instead of the Euler angles used in Welch and Bishop [28].

2.2 Importance Determination

The goal of computer puppetry is to create the movement of a target character based on

the performer’s movements. If the target character is quite different from the performer,

there may not be a direct mapping. Indirect mappings are common in traditional pup-

petry, for example, a marionette is controlled by strings that pull on its end-effectors.

Computer equivalents may create arbitrary mappings from sensor input to character pa-

rameters. For example, the Alive system from Protozoa [22] allows arbitrary Scheme

functions to be written to perform mapping.

Our interest is in recreating characters with human form, so the target character has

equivalent degrees of freedom as the simplified model of human being. In this paper,

we consider characters that are articulated figures with identical connectivity, so that

it is possible to transfer the captured joint angles directly to the target character. De-

spite this structural equivalence, the resulting motion will not match the performer’s

5

unless the character has identical size and proportion. There will be some level of

mismatching even for characters which have the same size and proportion as the per-

former, since we simplify the real human by a hierarchy of rigid bodies. One approach

to performance animation, described by Molet et al. [18, 19], models the character to

be as similar to the performer as possible. Bodenheimer et al. [5] presented how to de-

termine the segment lengths of a character that best fit the captured motion data while

discarding outliers in the captured motion data by a robust estimation technique. If the

segment proportions of the character are kept the same as those of the performer, a lim-

ited motion adaptation, such as keeping the foot position stationary during a contact,

can be achieved by scaling the position data according to the size difference. Restrict-

ing the proportions of the character precludes the use of stylized cartoon characters,

unless we can find similarly proportioned performers.

When the virtual character and performer have different sizes and proportions, not

all aspects of the motions can be preserved during mapping. At the lowest level, it

is simply not possible to mimic both the locations of the end-effectors and the joint

angles. A system must make choices as to which aspects of the motion should be

preserved and which should be allowed to change. We call an approach to motion

retargetting that makes this choice explicitly an importance-based approach.

Non-importance-based approaches make implicit choices as to what should be pre-

served during retargetting. For example, the most naive implementation of retargetting

simply transfers the parameter (joint angles and root position) values from performer

to character. Such a scheme implicitly selects the values of the parameters to be im-

portant and, therefore, the positions of the end-effectors to be unimportant. This is a

poor choice when the character must interact with other objects in the world, such as

the floor.

A common approach to motion retargetting matches the end-effector positions of

the character to those of the performer. Such an approach has the advantage that it

6

Figure 2: Artifacts of position-based approach

preserves the interactions between the character and its environment. Badler et al. [3]

used only the position data of hands and feet to adopt them to a virtual character with

an inverse kinematics technique. Residual degrees of freedom are fixed by exploiting

bio-mechanical knowledge. Choi et al. [7] adopted the idea of inverse rate control [29]

to compute the changes in joint angles corresponding to those in end-effector positions

while imitating the captured joint angles by exploiting the kinematic redundancy.

Implicit in end-effector schemes is the notion that end-effector positions are more

important than joint angles, that is, joint angles should be changed to achieve end-

effector positioning goals. While this prioritization is often preferable to the reverse,

it is not without its flaws. Consider the example of Figure 2. In this example, the

importance of the foot positions are properly reflected, while that of the hand positions

are overstated.

The central observation of an importance-based approach is that what is important

can only be determined by the context of the motion. At each instant, a system must

somehow select among the many possible things which are important, so it can change

the aspects that are not important.

Constraint-based approaches to motion explicitly represent details of the motion

that are important as geometric constraints. Gleicher’s space-time motion editing [11]

and retargetting system [12] proposed the notion of preserving the important qualities

of the motion by changing unimportant ones, where the important qualities were de-

fined by constraints. Lee and Shin’s hierarchical motion editing [17] provided similar

7

results using a different underlying implementation. Popovic and Witkin demonstrated

results that made the kinetic aspects of the original motion important to preserve [21].

The methods mentioned in the previous paragraph are all off-line in that they exam-

ine the entire motion simultaneously in processing. This off-line nature is also implicit

in the problem formulation, as well as in the solution method. All of the methods re-

quire the constraints to be identified before the motion can be processed. The decisions

as to what is important in a motion must be known before processing can occur in

these previous constraint-based approaches. This is infeasible in on-line applications.

Bindiganavale and Badler [4] introduced a constraint determination scheme to gener-

ate constraints automatically. However, their motion adaptation is done in an off-line

manner.

For computer puppetry, we must decide what is important in a given motion in an

on-line manner. We analyze the importance of each end-effector position based on

several factors discussed in Section 4. For example, the proximity of an end-effector

position to its surrounding environment can be used as a predictor of its importance.

The importance of an end-effector is inversely proportional to its distance to the near-

est object in the environment. A key notion of this work is that the power of an

importance-based approach, already demonstrated in off-line constraint-based systems,

can be brought to the on-line domain of computer puppetry.

2.3 Inverse Kinematics

We employ an inverse kinematics (IK) solver to compute the pose of the target charac-

ter. IK has become a standard technique in animation systems to control the pose of a

character based on the positions of its end-effectors.

IK solvers can be divided into two categories: analytic and numerical solvers. Most

industrial robot manipulators are designed to have analytic solutions for efficient and

robust control. Paden [20] divided an IK problem into a series of simpler subprob-

8

lems each of which has closed-form solutions. Korein and Badler [16] showed that the

IK problem of a human limb allows an analytic solution, and Tolani and Badler [26]

derived their actual solutions. A numerical method relies on an iterative process to

obtain a solution. Girard and Maciejewski [10] generated the locomotion of a legged

figure using a pseudo inverse of a Jacobian matrix. Based on neurophysiology, Koga

et al. [15] produced an experimentally good initial guess for a numerical procedure.

Gullapalli et al. [13] reduced the dimensionality of the redundant control system using

synergies as a basis control set. Zhao and Badler [30] formulated the IK problem as

a constrained non-linear optimization problem. Rose et al. [23] extended this formu-

lation to cover constraints that hold over an interval. To prevent the figure from doing

non-natural motions and reduce the redundancy of the IK problem, Badler et al. [3]

incorporated biomechanical information.

For computer puppetry, we make a number of demands on IK that required the de-

velopment of a novel solver. First, we must achieve real-time performance on the entire

body of the character. Secondly, we need the solver to provide predictably consistent

solutions: small changes to the problems should provide similar answers. Finally, the

solver must be able to account for the importances that are determined dynamically in

our system.

Our IK solver is discussed in Section 5. To solve an IK problem in real time, we di-

vide it into three subproblems: root position estimation, body posture computation, and

limb posture computation. First, the root position of a virtual character is computed to

provide a good initial guess for the body posture computation. If needed, we then adopt

numerical optimization to refine the body posture, which consists of the root position

and the orientations of the pelvis and the upper body. Finally, we use an analytical IK

solver to compute the limb postures and blend them with the captured limb postures.

Our solution for each of these subproblems is designed to incorporate the importance

values of the end-effectors so that it tries to preserve end-effector positions when their

9

importance values are high, while trying to preserve the captured joint angles of the

corresponding limb, otherwise.

3 Motion Filtering

In general, motion capture devices capable of providing real-time performance are par-

ticularly susceptible to noise. Magnetic motion capture systems, which are widely used

for real-time motion capture, suffer from the interference of low-frequency current-

generating devices such as a CRT-type display. Thus, there always exists some level of

jitter, that is, rapid random changes in reported positions and orientations that do not

correspond to actual movements [8]. Since on-line motion retargetting requires a high

quality input motion as the reference of an output motion, filtering is an essential part.

In the context of computer puppetry, filtering must be real-time, on-line, and performed

on orientations.

For on-line filtering, Kalman filters [2, 9, 28] are often employed because of their

capability of prediction and correction, that is, predicting future input data from their

history and correcting them by incorporating actual input data. Moreover, Kalman

filters can remove the random gaussian noises together with high frequency noises.

Because the noise included in motion capture data is not strictly a high frequency,

Kalman filters are an effective choice for denoising motion capture data in an on-line

manner.

In a standard (extended) Kalman filter, its state would completely describe the po-

sition of a sensor and its orientation. However, because of the non-linearity of the ori-

entation space, this scheme can hardly be applied directly to orientation data. Adopting

the results in [1, 6], Welch and Bishop [28] parameterized an incremental orientation

change with Euler angles which were regarded as a 3-vector to filter. The filtered Euler

angles were transformed back to an incremental orientation change in the non-linear

space to update the target orientation at each time step. However, the conversion be-

10

tween an incremental orientation change and its equivalent Euler angles is inefficient.

Moreover, recent motion capture devices measure orientations directly in unit quater-

nions. Therefore, differently from Welch and Bishop, we parameterize incremental

orientation changes with rotation vectors.

To facilitate our scheme, we maintain the target orientation qe externally to the

Kalman filter together with the internal state vector x. In particular, qe is represented

by an unit quaternion:

qe = (w, (x, y, z)),

where w2 + x2 + y2 + z2 = 1. The internal state x consists of the position p, the

rotation vector r, and their derivatives ṗ and ṙ:

x = (pT ṗT rT ṙT)T . (1)

Here the rotation vector r parameterizes the incremental orientation change of the

actual sensor input q(t) at the current frame with respect to the target orientation

qe(t − ∆t) at its previous frame. Therefore, we first compute difference between

these two orientations, that is, q−1
e (t−∆t)q(t). Then, we convert this unit quaternion

into a rotation vector through the logarithmic map [14] to measure r(t):

r(t) = ln(q−1
e (t − ∆t)q(t)). (2)

At each filter update step, r(t) in the state is converted into its incremental orientation

change equivalent er(t) through the exponential map to update the external target ori-

entation qe and then reset to be zero. Therefore, incremental orientations are linearized

for our (extended) Kalman filter, centered about zero.

Our dynamic model predicts the current position and the rotation by first-order ap-

11

proximations. Therefore, the prediction x̂−(t) of the state through the state transition

matrix A can be described :

x̂−(t) = Ax̂(t − ∆t) =

I3 ∆tI3 03 03

03 I3 03 03

03 03 I3 ∆tI3

03 03 03 I3

x̂(t − ∆t), (3)

where I3 and 03 are, respectively, 3 × 3 identity and zero matrices. Note that we use

the minus sign on the upper right corner for the predicted values. Similarly, the error

covariance matrix P(t) is predicted:

P−(t) = AP(t − ∆t)AT + Q. (4)

Here, P(t) = E
[

(x̂−(t) − x(t)) (x̂−(t) − x(t))
T
]

, which models estimation uncer-

tainty. The process noise covariance matrix Q characterizes the accuracy of the dy-

namic model. In our implementation, we simplify Q as follows:

Q =

q1I3 q2I3 03 03

q3I3 q4I3 03 03

03 03 q5I3 q6I3

03 03 q7I3 q8I3

. (5)

When the values of qi’s are small, the filter tends to suppress the detail of the captured

motion. On the other hand, if they are large, it tends to preserve the captured motion.

Therefore, qi’s should be tuned properly with respect to the condition of the capture

and the contents of the motion by increasing qi’s for detailed motion while decreasing

them for highly noisy input data.

We sample motion signals at a higher frame rate (∼ 120 fps) than that actually

12

required for animation to avoid the overshooting which occasionally occurs in constant

velocity models, especially when the velocity changes suddenly. Our measurement

consists of the position of a sensor and its incremental orientation represented by a

rotation vector, that is, z = (pT rT)T which can be obtained from of the state vector

directly. Therefore, our measurement can be predicted from the predicted state:

ẑ(t) = Hx̂−(t) =

I3 03 03 03

03 03 I3 03

x̂−(t). (6)

Now, we are ready to compute the Kalman gain K(t) as [27]:

K(t) = P−(t)HT (HP−(t)HT + R)−1, (7)

where R is the measurement noise covariance matrix. That matrix is either given from

the device manufacturer or acquired by off-line measurement. In practice, we measure

the noise while holding the sensor stationary to compute its noise covariance matrix R.

The residual between the actual sensor measurement z(t) and the predicted mea-

surement ẑ(t) from Equation (6) is:

∆z(t) = z(t) − ẑ(t). (8)

Then, the predicted state and the error covariance matrix are corrected as follows:

x̂(t) = x̂−(t) + K(t)∆z(t), and

P(t) = (I −K(t)H)P−(t).

(9)

We finish filtering at each frame by updating the external target orientation using

the rotation vector r̂(t). Taking the exponential map of the rotation vector and post-

multiplying it with the external target orientation q̂e(t−∆t) at the previous frame, we

13

(a) (c)(b) (d)

Figure 3: Two different situations

can find the final target orientation q̂e(t) at the current frame:

q̂e(t) = q̂e(t − ∆t)er̂(t). (10)

The rotation vector r̂(t) is reset to zero for filtering at the next frame.

4 Importance Analysis

When the performer and the target character do not have the same size and proportion,

not all aspects of the original motion can be preserved. A system must determine which

aspects of the motion are important to preserve, so that other less important aspects may

be changed to preserve them.

For an articulated figure, differing segment lengths means that both the joint an-

gles and end-effector positions cannot be simultaneously be recreated. There are three

obvious choices of motion aspects to preserve:

1. The position of the root of the character.

2. The joint angles.

3. The positions of the end-effectors.

There exist situations under which any of these three might be most important. For

example, observe the arm postures in Figure 3. Figure 3(a) shows a captured arm

14

posture from the performer. Retargetting this motion to a virtual character that does

not touch any object, we prefer the posture in the Figure 3(b) that preserves the joint

angles. However, the position of a hand needs to be preserved when it touches an object

as shown in Figure 3(c) and (d).

Our system must choose which of the three choices above is most important in a

dynamic, on-line way. To make this decision, we employ a number of heuristics:

1. The position of the root is most likely not important. This heuristic comes from

the observation that the choice of making the root is arbitrary: we could have just

as easily chosen any point as the root. In fact, preserving the root position may

change some important parameters that characterize a posture itself. Because

of this, the importance of the root position is downplayed in many approaches

that consider importance. Like our solver, described in Section 5, Gleicher’s

retargetting system [12] uses a heuristic that attempts to satisfy the constraints

(generally on the end-effectors) as much as possible by moving the root position.

2. If an end-effector is interacting with another object (such as the floor), then its

position is likely to be important. Therefore, proximity to objects in the environ-

ment should increase the importance of an end-effector.

3. If an end-effector will be interacting with another object in the near future, then

its position is important (as it is likely to be getting ready for the interaction).

Therefore, we incorporate prediction of proximity of an end-effector to an object

in the measure of its importance.

4. If an end-effector has just finished interacting with another object and is moving

away from it, its position may not be as important as its proximity suggests.

5. If the end-effector is not in proximity to another object, it is likely that its position

is unimportant.

15

Figure 4: Trajectories of the left foot generated by varying importance measure

In order to measure the interactivity of an end-effector with its environment, we

introduce the notion of importance of an end-effector, which can be determined by

analyzing the posture of the character in relation to the environment. In particular,

the distance from the end-effector to objects in the environment is a good measure

of interaction possibility. That is, the end-effector is more likely to interact with the

environment when it is closer to objects in the environment. Therefore, as the end-

effector approaches an object, its importance value should be increased to enforce the

geometric constraints created by the object. As the end-effector moves away from the

object, the importance value should be continuously decreased to preserve the captured

posture of the corresponding limb. Moreover, it is desirable to develop the distance

measure to reflect the trajectory of an end-effector and its dynamic nature.

Given end-effector ei of a character and object oj in the virtual space which is

corresponding to the real object, let dij(t) be Euclidean distance between them at time

t. The new distance function d+
ij(t) is defined as

d+
ij(t) =

dij(t) + dij(t + κ∆t)

2
(11)

for some positive κ and ∆t. d+
ij(t) represents the average of the current distance and

the predicted distance after κ∆t time. For small ∆t, d+
ij(t) can be approximated as

16

follows:

d+
ij(t) ≈

dij(t) + (dij(t) + κ∆t ḋij(t))

2

= dij(t) +
κ∆t

2
ḋij(t) = dij(t) + λḋij(t), (12)

where ḋij(t) is the first derivative of dij(t). d+
ij(t) reflects both the distance at t from ei

to oj and its changing rate ḋij(t). By varying λ we can control the degree of prediction

for d+
ij(t).

For an example, Figure 4 exhibits a jumping motion adapted with λ = 0 and λ =

0.15. The legs of the character are shorter than the performer’s. For λ = 0, the left

foot trajectory of the character (dashed line) agrees with that of the performer (thicker

line) only near the floor. For λ = 0.15, the former follows the latter while approaching

down to the floor (solid line). The foot is moving off the captured trajectory to preserve

the captured joint angles, either near the peak (λ = 0) or approaching to the peak

(λ = 0.15).

Let Dij denote the maximum distance within which ei is influenced by oj . Then,

the normalized distance d̄ij is defined as

d̄ij =
d+

ij

Dij

. (13)

An animator assigns Dij for the pair of end-effector ei and object oj in the environment

in accordance with a given animation context. A wider range of Dij shows a sensitive

interaction of end-effector ei with object oj . On the other hand, a narrower range

exhibits that ei moves independently of oj unless ei is close to oj .

The importance is zero when the normalized distance d̄ij is greater than or equal

to one, that is, ei is out of the influence of oj . As the distance decreases to zero,

the importance increases to one. Thus, the importance function p of the normalized

distance d̄ij can be designed with the condition of p(1) = 0 and p(0) = 1. In addition,

17

we set its derivatives there to be zero, that is, p′(0) = 0 and p′(1) = 0, to reduce the

rate of change of the function p at both extreme points. Thus, the importance of ei

with respect to oj is represented by the cubic polynomial function p satisfying those

conditions. That is,

p(d̄ij) =

2d̄3
ij − 3d̄2

ij + 1, if d̄ij < 1,

0, otherwise.
(14)

The importance value wi of end-effector ei over all external objects can be defined as

the maximum of them:

wi = max
j

(p(d̄ij)). (15)

It requires much time to compute the distance d̄ij from each end-effector ei of

a virtual character to every object oj in the environment, especially for a complex

surrounding environment. To achieve a real-time performance, we need to minimize

the number of possible objects that interact with each end-effector in accordance with

an animation context. An object that is hardly touched during the animation may be

eliminated in importance value computation. Moreover, objects may also be described

approximately with simpler geometry for easy distance computation.

5 Real-time Inverse Kinematics Solver

For computer puppetry, we must position the character such that the important as-

pects of a captured motion are preserved while providing real-time performance. For

our application, this demands computing the character’s posture 30 times per second.

Therefore, we need an IK solver that not only can incorporate the importance measures

of the previous section, but also has real-time performance even in the worst case.

18

As discussed in Section 2.3, previous IK solution methods do not meet the de-

mands of computer puppetry. Analytic methods provide guaranteed performance but

cannot incorporate importance measures required for retargetting. Numerical solvers

can include the importance metrics, but they hardly guarantee real-time performance.

To meet these two conflicting demands, we have developed a hybrid solver.

In this section, we present a fast IK algorithm which is specialized for human-

like articulated characters. We divide the IK process into three sub-problems: root

position estimation, body posture computation, and limb-posture computation. For

each step, we give a method that is specialized to achieve high-performance. This leads

us to employ inexpensive, closed-form solutions if applicable, and reserve numerical

optimization for the case in which it is absolutely required.

5.1 Root Position Estimation

In order to position the end-effectors of a character, an IK solver may change the root

position of the character or adjust its joint angles. As mentioned in Section 4, the root

of the character has been arbitrarily chosen as the character’s root, which is rarely the

most important aspect to preserve. Therefore, our solver first attempts to make the

character satisfy the constraints as much as possible by moving the root position. This

strategy was demonstrated for retargetting by Gleicher [12].

Beginning with the positional offset has an important advantage: unlike angular

changes that cause non-linear equations to compute, positional offset computation is

trivial and therefore efficient. Let pe
i represent the position of the i-th end-effector

when the character is posed with the captured joint angles, and p
g
i denote the goal

position for that end-effector. The displacement vector di = p
g
i − pe

i measures how

much the solver must move an end-effector to reach its goal. If there were only one end-

effector with a specified goal position, this constraint could be met by simply moving

the character’s root position by the displacement vector, where the joint angles would

19

pc

pc

ds

ds

ds

ds

Figure 5: Range 3D disks: range of hand, shoulder, and root position

not need to be changed.

In the event that multiple end-effectors are to be positioned, we compute the weighted

average of the displacements to find an initial offset d as follows:

d =

∑n

i widi
∑n

i wi

, (16)

where wi is the importance of the i-th end-effector. In the (unlikely) event that all

end-effectors require the same displacement, this displacement will solve all of the

constraints. More likely, the joint angles will need to be adjusted so that all of the

end-effector goals can be met.

While the weighted averaging attempts to position the root to meet all of the goals

simultaneously, it does not necessarily guarantee that all goals can be met. Once the

root position is fixed, the character can meet its goals by straightening its joints. There-

fore, the root position must be chosen such that all end-effector goals are “reachable,”

that is, close enough that straightening limbs will be sufficient. We refine our root posi-

20

tion estimate such that it guarantees reachability if possible. We relocate the root such

that it is within the reachability limits to the goals while being as close to the initial

estimate as possible.

As shown in the left of Figure 5, the reachable space of the hand can be represented

as the 3D disk centered at the shoulder, and its radius is the length of the arm. Here,

a 3D disk consists of a sphere and the set of all points bounded by it. The middle of

Figure 5 shows that the same 3D disk centered at the goal position represents the range

of the shoulder joint position. Finally, with the orientations of the pelvis and the waist

fixed as in the captured posture, we compute the range of the root position as illustrated

on the right of Figure 5. Let ds denote the vector from the shoulder to the root position.

The translation of the 3D disk at the goal position pc by the vector ds yields the 3D

disk that gives the range of the root position. If the root is in this 3D disk, the character

can reach the goal position by stretching the limb only.

When the importance value of an end-effector is low, the root position does not

need to be modified to make this end-effector reachable at its goal. Therefore, the

range corresponding to this end-effector may be larger than the actual reachable range.

To avoid an unnecessary offset of the root position, we enlarge the size of the 3D disk,

so that its size is inversely proportional to the importance value. The increased radius

ri corresponding to the i-th limb is given as follows:

ri(li, wi) =
li

wi

, (17)

where li is the length of the i-th limb and wi is its importance value.

Since the virtual character has four end-effectors, we have four 3D disks. The com-

mon intersection of these 3D disks is the range of the root position that makes all of the

end-effectors reachable to their goal positions. As an initial guess for the root position,

we choose the closest point from the offset root position to this intersection to preserve

the posture of the performer as much as possible. Thus, the root position estimation

21

(a) On a sphere (b) On a circle (c) At a vertex

Figure 6: Closest points

is formulated as the problem of finding the closest point from a given position to the

common intersection of four 3D disks.

The intersection of 3D disks consists of four surface elements as shown in Figure 6:

spherical regions, circular edges, and vertices. A spherical region is a part of a sphere

bounded by a sequence of spherical arcs. A circular edge is a part of a circle that is

the intersection of two spheres. A vertex is determined by the common intersection of

three spheres.

There are two cases depending on the offset root position with respect to the in-

tersection. If this point is contained in the interior of the intersection, then the point

itself is the closest point to the intersection. Suppose that it is not contained in the inte-

rior. Then the closest point must lie on the boundary of the intersection. Therefore, we

may enumerate all possible surface elements due to the intersection of the four spheres

corresponding to the bounding surfaces of the disks, respectively.

Three spheres determine at most two vertices. Since there are four ways of choosing

a triple out of four spheres, we have a maximum of eight vertices. Every pair of vertices

can possibly admit a spherical edge, and thus we have at most 24 edges. However, these

are completely included in a maximum of six circles. Moreover, each spherical face

is completely contained in one of four spheres. Instead of enumerating all surfaces

elements, we equivalently check those spheres, circles and vertices.

We first compute the closest point to each sphere from the offset root position.

Among these points, if any, we choose the point that is contained in the intersection and

22

the closest to the root position. If such a point does not exist, then we compute the set

of points, each of them is the closest from the root position to each circle. Out of them,

we choose the one that is closest to the root position and in the intersection. Suppose

that there does not exist such a point. Then one of vertices may be the solution. We

choose the one closest to the root position among those contained in the intersection.

For more details in computing the initial root position, refer to the Appendix. If there

does not exist a common intersection of the disks, we discard the spheres which do not

intersect the one whose corresponding end-effector has the largest importance value

and repeat this process for the remaining disks.

5.2 Body Posture Computation

If the initial root position estimate does not allow all limbs to be reachable to the goal

positions, we need to adjust the body posture consisting of the root position, the ori-

entation of the pelvis, and that of the upper body. Since those segments are tightly

coupled, a numerical method is adopted to find their configurations. Numerical meth-

ods hardly guarantee a real-time response for computing the inverse kinematics of an

entire human figure, while it is practical to solve only a small part of the IK problem

numerically, and to employ analytic methods for the rest of the task. Such a hybrid

solver was demonstrated in [17].

We formulate a restricted version of the IK problem for determining the posture of

the body posture separately from the problem of computing the posture of the limbs.

The body posture of a character can be written as v = (p0,q0,q1, · · · ,qn), where p0

and q0 are the position and the orientation of the root, respectively. q j , 1 ≤ j ≤ n,

are the orientations of body segments such as the waist and the upper body. When the

character has a rigid torso, v is simply reduced to (p0,q0,q1), since n = 1.

23

The objective function consists of two terms:

E = Eg + αEp, (18)

where the first term Eg is for making the end-effectors reachable to their goals and the

last term Ep is to preserve the captured posture. We will explain those two terms in

detail.

Eg is the sum of Ei’s, each of which is a function of the distance from the i-th

end-effector ei to its goal position. Provided with the shoulder (or the coxa) position

ps
i of the i-th limb and its goal position p

g
i , Ei is given as follows:

Ei =

0, if ||ps
i − p

g
i || < li,

(||ps
i − p

g
i || − li)

2
, otherwise,

(19)

where li is the length of the i-th limb when it is maximally stretched. Ei is zero when

the end-effector ei is able to reach its goal position. For this case, we prefer to lengthen

or shorten the corresponding limb than to adjust the body posture. Recall that an end-

effector of a low importance value has no need to preserve its captured position. Thus,

to relax the constraint on this end-effector we enlarge the range of the shoulder. By

substituting the length li of each limb with the new radius ri = li
wi

as mentioned in

Section 6.1, we have

Ei =

0 , if ||ps
i − p

g
i || < ri,

(||ps
i − p

g
i || − ri)

2 , otherwise.

Note that with the importance value wi of one, Ei plays a role of pulling the end-

effector to reach the goal position exactly. On the other hand, as importance value wi

approaches zero, the i-th end-effector keeps the original posture by preserving the joint

angles.

24

q0
θ

q(θ)
n

Figure 7: Residual degree of freedom of shoulder

Letting q∗
j and p∗

0 be the captured orientation of the j-th segment and the estimated

position of the root, respectively, Ep is a weighted sum of the squared geodesic dis-

tances between qj and q∗
j for all 0 ≤ j ≤ n, and the squared distance between p0 and

p∗
0:

Ep =

n
∑

j=0

βj || ln(q−1
j q∗

j)||
2 + γ||p0 − p∗

0||
2. (20)

Minimizing Ep preserves the captured motion as much as possible. We find the optimal

solution that minimizes the objective function by employing the conjugate gradient

method. Here, we use the captured joint angles and the root position computed in

Section 5.1 as the initial guess for our optimization.

5.3 Limb Postures Computation

Given the position of a shoulder and that of the goal together with a hand orientation,

we present how our IK solver computes the configuration of an arm. The configuration

of a leg can similarly be computed from the hip position and foot position and orien-

tation. As pointed out by Tolani et al. [25] and Lee et al. [17], the angle between the

brachium of the arm and its forearm can be computed uniquely from the distance be-

tween the shoulder and the goal. We adjust the shoulder joint to locate the wrist at the

goal position. Even with the wrist position fixed at the goal position, the shoulder joint

25

still has one residual degree of freedom that rotates the elbow about the axis passing

through the shoulder and the wrist. Korein et al. [16] have parameterized that degree

of freedom by the swivel angle θ. As illustrated in Figure 7, the elbow traces a circle

called the elbow circle as θ varies. Once θ is chosen, the joint angle of the wrist is

determined uniquely by preserving the orientation of the hand.

This swivel angle θ can be described with a unit quaternion formulation. The unit

quaternion q(θ) representing the rotation by θ about the axis n is e
θn

2 for −π < θ ≤ π,

where θ is measured from a arbitrarily choosen reference point on the circle. Denoting

this point by a unit quaternion q0, we have

q(θ) = e
θn

2 q0. (21)

Unlike the original version of Lee et al. [17] which determines θ by a numerical

optimization, we solve for θ analytically so that the arm posture deviates as small as

possible from the captured posture. Thus, we choose θ that minimizes the geodesic

distance φ in [0, 2π) from the captured shoulder joint orientation q∗ to q(θ). Note that

both q∗ and −q∗ represent the same orientation, due to the antipodal equivalence of

the unit quaternion space. Therefore,

φ(θ) = min (arccos(q∗ · q(θ)), arccos(−q∗ · q(θ))) = (arccos(|q∗ · q(θ)|). (22)

φ(θ) is minimized when |q∗·q(θ)| is maximized. By definition, e
θn

2 =
(

cos θ
2 ,n sin θ

2

)

.

Let q∗ = (w∗,v∗) and q0 = (w0,v0). Then, the absolute value of their inner product

26

is given as follows:

|q∗ · q(θ)| =

∣

∣

∣

∣

(w∗,v∗) ·

{(

cos
θ

2
,n sin

θ

2

)

(w0,v0)

}∣

∣

∣

∣

=

∣

∣

∣

∣

a cos
θ

2
+ b sin

θ

2

∣

∣

∣

∣

=
√

a2 + b2

∣

∣

∣

∣

sin

(

θ

2
+ α

)∣

∣

∣

∣

, (23)

where

α = tan−1 a

b

a = w∗w0 + v∗ · v0

b = w0n · v∗ − w∗n · v0 + v∗ · (n × v0) .

The absolute value of the sine function has the maximum at π
2 and −π

2 . Thus, |q∗ ·

q(θ)| is maximized either at q (−2α + π) or at q (−2α − π). Since the distance of

two points in the unit quaternion space is inversely proportion to their dot product,

q (−2α + π) is the closest from q∗ if q∗ ·q (−2α + π) > q∗ ·q (−2α − π); otherwise,

q(−2α − π) is the closest.

Now, with both captured and computed limb postures available, we blend them

together to obtain a realistic motion. For this purpose, we perform spherical linear

interpolation between each captured joint orientation of a limb with its corresponding

IK solution. Let qik and q∗ik be the orientation of the k-th joint in the i-th limb obtained

from the IK solver and that from the captured posture. Then the blended joint angle q ′
ik

can be described by spherical linear interpolation as follows:

q′
ik = slerp(q∗ik , qik, wi)

= ewi ln(qikq
∗−1
ik

)q∗
ik , (24)

27

where wi is the importance value of the i-th limb. That is, the limb with a high im-

portance value can preserve the end-effector position, and that with a low importance

value can preserve the captured joint angles.

The non-penetration condition may be violated since the posture is blended re-

gardless of the constraints. Thus the blended posture has to be adjusted explicitly to

prevent unwanted penetration. Provided with the predefined external objects for each

end-effector, this violation can be detected easily. Before penetrating an object, the

end-effector touches the boundary of the object. Thus, the preferable position of the

end-effector is the intersection point of the object boundary and the ray from the shoul-

der to the end-effector during penetration. This position moves continuously on the

object in accordance with the end-effector movement. The penetration problem can be

effectively eliminated by adjusting the limb posture using the IK solver for limbs.

6 Analysis of Temporal Constraints

In retargetting motions, we must preserve important temporal aspects of the motion

along with spatial aspects. Gleicher [12] emphasizes the importance of avoiding the

introduction of high-frequencies during adaptation. Both this work and the work of Lee

and Shin [17] provide approaches for avoiding the addition of discontinuities during

adaptation. Unfortunately, both schemes rely on examining durations of motions and

therefore can only be applied in off-line applications. In this section, we show that the

approach presented in this paper does not introduce unwanted discontinuities into the

resulting motion.

To begin, we must assume that the initial motion is free of unwanted discontinuities.

This assumption is not restrictive because the movement of the performer is continu-

ous. Discontinuities may be introduced by noise in the capture process, but these are

generally removed by the filtering process described in Section 3. The continuity of

the initial motion applies to both the captured joint angles and end-effector positions.

28

Given continuous paths for the end-effectors, our IK solver will provide continuous

trajectories for the parameters. Achieving this requires the solver to make consistent

changes. That is, similar inputs to the solver must provide similar outputs. To guarantee

this consistency, our IK solver tries to find the solution in an on-line manner so that it

is close to the filtered input posture, while satisfying the kinematic constraints.

For our IK solver, the only kinematic constraints are the positions of end-effectors.

These constraints are specified at every frame as temporal constraints. As an end-

effector is approaching an object in the environment, its distance to the object is mono-

tonically decreasing. Similarly, the distance is monotonically increasing as the end-

effector is departing from the object. When the end-effector touches (or passes by) the

object, the monotonicity changes but the distance function is still continuous at that

instance.

For any continuous distance function, our importance function gives continuous

importance values as described in Section 4. In other words, the importance values

are consistently changed to reflect the temporal proximity of end-effectors to the envi-

ronment. Therefore, the importance values have inter-frame coherence. Since our IK

solver utilizes as input the reference motion data and the importance values, we can

exclude unexpected motion artifacts such as unwanted jerkiness. That is, enforced to

minimize the change from the reference motion, our IK solver tries to find an intended

motion. Moreover, guided by the importance values for interaction with the environ-

ment, it also predicts the future temporal constraints and continuously pays attention to

them for motion coherence.

7 Experimental Results

For puppetry performance we use a MotionStar Wireless motion capture device from

Ascension Tech, Inc. with 14 sensors and two extended range transmitters. Each of

sensors detects the magnetic field emitted by a transmitter to report its position and

29

(a) Pang-Pang (b) Aliang

Figure 8: Virtual characters on air controlled by our prototype system

orientation up to 144 times per second.

Our prototype system has been deployed for production and used successfully to

create a virtual character for a children’s television program as well as a virtual news

reporter. Both have been shown on Korean national television, called KBS. The frog-

like creature shown in Figure 8(a) (“Pang-Pang”) who regularly appears in a daily TV

show for children to demonstrate his comic performance. Thanks to the capability of

our system for synthesizing realistic motion in real time, Pang-Pang and a real actor

can interact with each other. Figure 8(b) shows a virtual character (“Aliang”) who has

performed the role of a news reporter for the election of Korea National Assembly.

Even in a time-critical situation such as reporting interim election results, Aliang can

accomplish his role successfully.

The skeleton used in our system has 43 degrees of freedom including 11 revolute

joints of 3 degrees of freedom, 4 hinges on elbows and knees, and the position of the

root and its orientation. The floor is modeled as a plane for all of the uses of our system

to date.

To test our system’s performance, we created two puppets specifically designed to

provide challenging retargetting problems. The character named long tall Sally has

30

Table 1: The number of iterations in numerical solver with and without root position
estimation

the number of iterations
motion #frames without with

Blubby Sally Blubby Sally
Walk 39 47 0 0 0

Throw 157 244 0 0 0
Jump 88 111 0 0 0

Handstand 211 266 38 0 0
Dance 591 1253 0 1 0

Total (61 Clips) 9692 15634 429 8 0

long arms and legs, while a ball-shaped man called Blubby with extremely short legs.

To perform experiments, 61 prerecorded motion clips were used as the input for motion

retargetting.

Table 1 shows the number of iterations in numerical optimization with and without

initial root position estimation. Statistics for five selected motion clips are given in the

first five rows of the table. The total figures for 61 clips are shown in the last row.

Since Sally has long arms and legs, she can reach the captured end-effector positions

without moving its root position. Thus, the number of iterations for Sally is small even

without initial root position estimation. However, with estimated initial root positions,

the number of iterations decreases to zero for our test motion clips. The effect of initial

root position estimation is more apparent for Blubby with short legs. In most cases,

our estimation algorithm finds the root position that makes the end-effectors reachable

to their goal positions without any help of the numerical solver given in Section 5.2.

Table 2 gives an overall performance of our on-line motion retargetting algorithm

excluding rendering time. Timing information was obtained on a SGI Indigo2 worksta-

tion with an R10000 195 MHz processor and 128 Mbytes memory. The execution time

for each example mainly depends on the number of iterations in numeric optimization.

The tables show real-time performance for each examples.

In Figure 13, a captured walking motion is applied to a character with various meth-

ods. The upper images of Figure 13 reveal artifacts due to the geometric inconsistency

31

Table 2: Elapsed time

Blubby Sally
motion #frames elapsed per elapsed per

time frame time frame
(msec) (msec) (msec) (msec)

Walk 39 203 5.2 206 5.3
Throw 157 864 5.5 876 5.6
Jump 88 466 5.3 474 5.4

Handstand 211 1135 5.4 1139 5.4
Dance 591 3188 5.4 3201 5.4

Total (61 Clips) 9692 52543 5.4 52732 5.4

between the performer and the puppet. Since the positions of the feet are not incorpo-

rated into the motion retargetting, the supporting foot is sliding. In contrast, the middle

motion preserves the positions well. However, the motions of the arms look unreal-

istic, since the joint angles of the arms are over-adjusted to preserve the positions of

the hands. The bottom figure is generated by our motion retargetting. The supporting

foot is fixed at the proper position without sliding, and the joint angles of the arms are

preserved as the original ones.

With conventional approaches based on joint angle preservation, there would also

exist foot-sliding artifacts when the character has longer limbs, as given in the top

of Figure 14. The middle image exhibits unintended bending of legs due to position

preservation and an ill-selected initial root position. By assigning low importance val-

ues to the hands and offsetting the root position, we have a better result in which the

legs are not bent as shown in the bottom figure. Figure 15 gives images of more ex-

amples. In Figure 16, we present the motions including crawling in which both hands

and feet contact the floor and picking up a box which exhibits interaction between the

hands and a movable object.

32

8 Conclusions & Future Work

We have presented a new approach for on-line motion retargetting that transforms mo-

tions of a performer to a virtual character of a different size. Introducing the notion

of the importance of an end-effector, we have been able to generate realistic motion

for a character in real time while preserving the characteristics of captured motions as

much as possible. KBS (Korean Broadcasting System), the largest public television

broadcasting company in Korea, has been adopting our on-line motion retargetting al-

gorithm to control the virtual character, Pang Pang in a daily TV show for children.

This show has become one of the favorites among children partly due to Pang Pang’s

successful performance. KBS also successfully showed the performance of a virtual

reporter, Aliang for the real election using this algorithm.

Our inverse kinematics solver is specialized for human-like characters to insure

real-time performance, although it can be easily adapted to other types of creatures

with limbs. The notion of importance gives reasonable look-ahead capability useful for

avoiding jerkiness in motion. However, unlike full-scale space-time optimization [12],

our approach has no look-back capability due to the on-line nature of computer pup-

petry and allows only a limited repertoire of constraints.

Our approach addresses only the interaction between the end-effectors of a charac-

ter and objects in the environment. However, we may also be interaction among the

segments of a character. For an example, due to the geometric difference of the char-

acter from a performer, its end-effectors may penetrate its body, and also its hands are

hard to touch each other without interpenetration for clapping. Thus, to resolve these

artifacts, the IK solver should be enhanced to efficiently handle self-interactions.

We focus on handling only the geometric discrepancy between a performer and a

puppet. To generate more realistic motions, retargetting should also incorporate the

characteristics of the puppet. Anthropomorphized animals such as cartoon-like birds

and monkeys have their unique characteristics of motions. Those motions can hardly

33

be captured directly from a human performer, and thus give an additional barrier to

overcome.

Acknowledgements

This work was supported in part by the NRL (National Research Laboratory) program

of KISTEP (Korea Institute of Science & Technology Evaluation and Planning).

References

[1] Ali Azarbayejani and Alex P. Pentland. Recursive estimation of motion structure,

and focal length. IEEE Transactions on Pattern Analysis and Machine Intelli-

gence, 17(6):562 – 575, 1995.

[2] Ronald Azuma and Gary Bishop. Improving static and dynamic registration in

an optical see-through hmd. In Proceedings of SIGGRAPH 94, pages 197–204,

1994.

[3] N. Badler, M. J. Hollick, and J. P. Granieri. Real-time control of a virtual human

using mininal sensors. PRESENCE, 2(1):82–86, 1993.

[4] Rama Bindiganavale and Normal I. Badler. Motion abstraction and mapping with

spatial constraints. In Proceedings of International Workshop, CAPTECH’98,

pages 70–82, 1998.

[5] Boddy Bodenheimer, Charles Rose, Seth Rosenthal, and John Pella. The process

of motion capture: Dealing with the data. In Proceedings of the Eurographics

Workshop on Computer Animation and Simulation ’97, 1997.

34

[6] Ted J. Broida and Rama Chellappa. Estimation of object motion parameters from

noisy images. IEEE Transactions on Pattern Analysis and Machine Intelligence,

8(1):90–99, 1986.

[7] Kwang-Jin Choi and Hyeong-Seok Ko. On-line motion retargetting. Journal of

Visualization and Computer Animation, 11:223–243, 2000.

[8] Ascension Technology Corporation. Motion Star Installation and Operation

Guide. Ascension Technology Corporation, 1996.

[9] Martin Friedmann, Thad Starner, and Alex Pentland. Synchronization in virtual

realities. PRESENCE, 1(1):139–144, 1991.

[10] Michael Girard and Anthony A. Maciejewski. Computational modeling for the

computer animation of legged figures. In Proceedings of SIGGRAPH 85, pages

263–270, 1985.

[11] Michael Gleicher. Motion editing with spacetime constraints. In Proceedings of

1997 Symposium on Interactive 3D Graphics, pages 139–148, 1997.

[12] Michael Gleicher. Retargeting motion to new characters. In Proceedings of SIG-

GRAPH 98, pages 33–42, 1998.

[13] Vijaykumar Gullapalli, Jack J. Gelfand, Stephen H. Lane, and Wade W. Wilson.

Synergy-based learning of hybrid position/force control for redundant manipula-

tors. In Proceedings of the 1996 IEEE International Conference on Robotics and

Automation, 1996.

[14] Myoung-Jun Kim, Sung Yong Shin, and Myung-Soo Kim. A general construc-

tion scheme for unit quaternion curves with simple high order derivatives. In

Proceedings of SIGGRAPH 95, pages 369–376, 1995.

[15] Y. Koga, K. Kondo, J. Kuffer, and J. Latombe. Planning motions with intentions.

In Proceedings of SIGGRAPH 94, pages 395–408, 1994.

35

[16] J. U. Korein and N. I. Badler. Techniques for generating the goal-directed motion

of articulated structures. IEEE Computer Graphics & Application, 2:71–81, 1982.

[17] Jehee Lee and Sung Yong Shin. A hierarchical approach to interactive motion

editing for human-like figures. In Proceedings of SIGGRAPH 99, pages 39–48,

1999.

[18] T. Molet, R. Boulic, and D. Thalmann. A real-time anotomical converter for hu-

man motion capture. In Proceedings of 7th Eurographics Workshop on Animation

and Simulation, 1996.

[19] T. Molet, R. Boulic, and D. Thalmann. Human motion capture driven by orienta-

tion measurements. PRESENCE, 8(2):187–203, 1999.

[20] B. Paden. Kinematics and Control Robot Manipulators. PhD thesis, University

of California, Berkeley, 1986.

[21] Zoran Popovic and Andrew Witkin. Physically based motion transformation. In

Proceedings of SIGGRAPH 99, pages 11–20, 1999.

[22] Protozoa. Technology information. http://www.protozoa.com/Page 2/info index.html,

1999.

[23] Charles F. Rose, Brian Guenter, Bobby Bodenheimer, and Michael F. Cohen. Effi-

cient generation of motion transitions using spacetime constraints. In Proceedings

of SIGGRAPH 96, pages 147–154, 1996.

[24] D.J. Sturman. Computer puppetry. IEEE Computer Graphics & Applications,

18(1):38–45, 1998.

[25] D. Tolani and N. I. Badler. Real-time inverse kinematics of the human arm. PRES-

ENCE, 5(4):393–401, 1996.

36

[26] D. Tolani, A. Goswami, and N. Badler. Real-time inverse kinematics techniques

for anthropomorphic limbs. Graphical Models, 62(5), 2000.

[27] Greg Welch and Gary Bishop. An introduction to the kalman filter. Technical

Report TR95-041, University of North Carolina at Chapel Hill, Department of

Computer Science, 1995.

[28] Greg Welch and Gary Bishop. Scaat: Incremental tracking with incomplete in-

formation. In Proceedings of SIGGRAPH 97, pages 333–344, 1997.

[29] D. J. Whitney. Resolved motion rate control of manipulators and human prosthe-

ses. IEEE Transactions on Man-Machine System, pages 47–53, 1969.

[30] J. Zhao and N. I. Badler. Inverse kinematics positioning using nonlinear program-

ming for highly articulated figures. ACM Transactions on Graphics, 13(4):313–

336, 1994.

A Finding the Closest Point on the Intersection of Spheres

As given in Section 6, there are three types of surface elements: spheres, circles, and

vertices. We describe how we find the closest point on each type of element to a given

point p. It is trivial to find the closest point on a sphere to the given point. Therefore,

we proceed directly to the other cases.

cc

cs2

x
rc rs2rs1

cs1
d

Figure 9: Intersection of two spheres

Now, consider the closest point on a circle to p. We start with how to construct the

circle C, which is the common intersection of the two spheres S1 and S2. The radius

37

rc of C can be computed with Pythagorean theorem. Let csi
and rsi

for i = 1, 2, 3 be

the center of the sphere Si and its radius, respectively. The radius rc of C satisfies the

following equations:

r2
c + x2 = r2

s1
, and (25)

r2
c + (||d|| − x)2 = r2

s2
, (26)

where x is the distance between the center cc of C and that of S1, and d is the vector

from s1 to s2. Solving those equations, we get

r2
c = r2

s1
−

(r2
s1

− r2
s2

+ ||d||2)2

4||d||2
. (27)

Here S1 and S2 intersect unless r2
c is negative. From Equations (25) and (26),

x =
r2
s1

− r2
s2

+ ||d||2

2||d||
. (28)

Thus,

cc =
r2
s1

− r2
s2

+ ||d||2

2||d||
·

d

||d||
+ cs1 . (29)

Let n be the normal vector of the plane where the circle lies. Then,

n =
d

||d||
. (30)

We are ready to find the closest point on the circle C to the given point p. Let h

be the projection of the vector cc − p onto the normal vector n of the plane, that is,

h = [n · (cc − p)]n. Then, the closest point pc on C to p is

pc = cc +
p̂− cc

||p̂− cc||
rc. (31)

38

h

p

p̂cc

l̂pc

cc − p

l

Figure 10: Closest point from a point to a circle

where p̂ = p + h, that is, p̂ is the projection of p onto the plane containing C. As

shown in Figure 10, the distance l from p to pc is
√

||h||2 + l̂2, where l̂ is the distance

from p̂ to pc, that is, l̂ = ||p̂− cc|| − rc.

cs3
n

cc1

cc2

h

Figure 11: Intersection of a sphere and a plane

Finally, we show how to find the closest among vertices, if any, to the given point

p. Given those vertices, it is trivial to find the closest. Thus, we focus on explaining

how to compute the vertices lying at the corners of the common intersection of three

spheres, S1, S2 and S3. We first calculate the intersection circle C1 of two spheres

S1 and S2. Cutting the sphere S3 with the plane containing C1, we have the circle

C2. Provided with the center point cc1 of C1 and the normal vector n of the plain

containing the circle C1, the center point cc2 of C2 is the projection of the center point

cs3 of the sphere S3 onto the plane. Thus,

cc2 = cs3 + h, (32)

where h is the vector from cs3 to cc2 on the plane, that is, h = [n · (cc1 − cs3)]n. The

39

radius rc2 of C2 is given as follows:

r2
c2

= r2
s3

− ||h||2, (33)

where rs3 is the radius of the sphere S3. The sphere S3 does not touch the plane if

r2
c2

has a negative value. Two vertices determined by three spheres are the intersection

v1

cc1

rv

u
cc2

d
cv

v2

Figure 12: Intersection of two circles

of the circles C1 and C2. To compute the intersection of C1 and C2, we evaluate the

mid-point cv of the vertices v1 and v2 (see Figure 12.) Similarly to the sphere-sphere

intersection, the mid-point cv and the distance rv from each of vertices to c are given

as follows:

r2
v = r2

c1
−

(r2
c1

− r2
c2

+ ||d||2)2

4||d||2
, and (34)

cv =
r2
c1

− r2
c2

+ ||d||2

2||d||
·

d

||d||
+ cc1 , (35)

where the d is the vector from the cc1 to cc2 . The normalized direction vector u from

cv to v1 is obtained from the cross product of n and d, that is, u = n×d
||n×d|| . Hence, we

have the vertices v1 = cv + rvu and v2 = cv − rvu.

40

(a) the captured joint angles only

(b) a conventional IK solution with kinematic constraints on end-effectors

(c) Proposed algorithm combining the captured joint angles and the IK solution

Figure 13: Walking motion of Blubby

41

(a) the captured joint angles only

(b) a conventional IK solution with kinematic constraints on end-effectors

(c) Proposed algorithm combining the captured joint angles and the IK solution

Figure 14: Walking motion of Sally

42

(a) Throwing

(b) Jumping

(c) Handstand

Figure 15: Example motions of Blubby and Sally

43

(a) Crawling

(b) Backfliping

(c) Picking a box up

Figure 16: Example motions with interaction of hands

44

